
Error: Can't find stylesheet to import.
 ╷
4 │ @import "gist";
 │ ^^^^^^
 ╵
 app/assets/stylesheets/application.pdf.scss 4:9 root stylesheet

CircuitPython Display Support
Using displayio
Created by Carter Nelson

https://learn.adafruit.com/circuitpython-display-support-using-displayio
Last updated on 2024-03-28 07:55:30 PM EDT

Table of Contents

Introduction

Library Overview

Image Related Things
Collection Related Things
Display Hardware Things

•
•
•

Coordinate System
Hierarchy and Nesting

Bitmap and Palette

Bitmap
Palette
Bitmap + Palette

TileGrid

TileGrid
Changing a Tile

Group

Group Adding/Removing
Group Position
Group Scale
Group Visibility
Group Content Limits
Summary

Display and Display Bus

FourWire
I2CDisplay
ParallelBus
Display
Display Drivers
Boards with Built In Displays
Boards without Built In Displays
Using a Display
Releasing Displays

EPaperDisplay

Boards with Built in EPDs
EPD Usage
EPD Specific Behavior

Examples

A Note on Display Setup

Text

Basic Text with Built in Font
Using Bitmap Fonts
Text Positioning

•
•

•
•
•

•
•

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•

•

•
•
•

Changing Text

Display a Bitmap

BMP File Format
OnDiskBitmap
ImageLoad

Draw Pixels

Sprite Sheet

Sprite Sheet Example
Change The Scale!
Change The Location!

Multiple TileGrids

A Sprite and Its Castle
Order Matters
Using Different Scale
Change The Sprite
Change Sprite Location

External Display

The Hard Way
The Easy Way

Manual Refresh

Turning Auto Refresh Off
Example Usage
Turning Auto Refresh On

UI Quickstart

Referencing the Display
Groups
Shapes
Fonts
Label
Button
Images
Calculator UI Elements

Helper Libraries

The List

•

•
•
•

•
•
•

•
•
•
•
•

•
•

•
•
•

•
•
•
•
•
•
•
•

•

FAQs

Introduction

CircuitPython has native support for displays with the displayio (https://
adafru.it/EFr) built-in module This library provides the support needed for
drawing to graphical displays. It allows for some common tasks like
displaying bitmap images, drawing text with fonts, etc. However, there are
also some fancy additional features that provide the framework for creating
extended functionality.

This guide will go over the main aspects of the displayio library and
describe how they are used. It will explain how all the bits work together to
finally create colored pixels on your display. Additionally, a set of examples
to demonstrate some typical use cases are provided.

Let's get started...

https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/__init__.html

Library Overview

The official documentation for the displayio library can be found here:

displayio API Documentation
https://adafru.it/19ej

You'll want to go there for detailed information about using the displayio
library. This guide is meant to be a compliment to that information.

We start with an overview of what all the parts do.

Image Related Things

Graphics means images, right? Pretty much. These are the items that relate
to essentially that.

Bitmap (https://adafru.it/EFs) - This is pretty much what you expect, a
2D array of pixels. Each pixel contains an index into a "pixel shader",
typically a Palette, which is where the actual color information comes
from.
OnDiskBitmap (https://adafru.it/EFt) - This creates a Bitmap image
(picture) from a file stored on a disk, like omg_cute_kitteh.bmp. It
must also be used in conjunction with a pixel shader, typically
ColorConverter, to provide the color information.
Palette (https://adafru.it/EFu) - This is a simple list of colors. A
Bitmap's pixel value is an index into this list.
ColorConverter (https://adafru.it/EFv) - Use to convert between color
formats.

Collection Related Things

Bitmaps are not displayed directly. Instead, they are added to a set of nested
collection like classes which ultimately get shown on the display.

TileGrid (https://adafru.it/EFw) - This uses a Bitmap and a pixel
shader (Palette) to draw actual pixels. It must be added to a Group.
Group (https://adafru.it/EFx) - This is a collection of one or more
TileGrids. It can also contain other Groups.

Display Hardware Things

This sets up the actual display hardware and how it is connected to the
microcontroller.

BusDisplay (https://adafru.it/19IB)- This is the actual display. It must
be connected to the host controller via a "display bus".
FourWire (https://adafru.it/19IC) - A SPI based display bus.
ParallelBus (https://adafru.it/19ek) - An 8-bit parallel display bus.
I2CDisplayBus (https://adafru.it/19ID) - An I2C based display bus.
EPaperDisplay (https://adafru.it/19IE) - An EPaper or E-Ink style
display.

•

•

•

•

•

•

•

•
•
•
•

https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/Bitmap.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/Bitmap.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/OnDiskBitmap.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/OnDiskBitmap.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/Palette.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/Palette.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/ColorConverter.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/ColorConverter.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/TileGrid.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/TileGrid.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/Group.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/Group.html
https://docs.circuitpython.org/en/latest/shared-bindings/busdisplay/index.html#busdisplay.BusDisplay
https://docs.circuitpython.org/en/latest/shared-bindings/busdisplay/index.html#busdisplay.BusDisplay
https://docs.circuitpython.org/en/latest/shared-bindings/fourwire/index.html#fourwire.FourWire
https://docs.circuitpython.org/en/latest/shared-bindings/fourwire/index.html#fourwire.FourWire
https://docs.circuitpython.org/en/latest/shared-bindings/paralleldisplaybus/index.html#paralleldisplaybus.ParallelBus
https://docs.circuitpython.org/en/latest/shared-bindings/paralleldisplaybus/index.html#paralleldisplaybus.ParallelBus
https://docs.circuitpython.org/en/latest/shared-bindings/i2cdisplaybus/index.html#i2cdisplaybus.I2CDisplayBus
https://docs.circuitpython.org/en/latest/shared-bindings/i2cdisplaybus/index.html#i2cdisplaybus.I2CDisplayBus
https://docs.circuitpython.org/en/latest/shared-bindings/epaperdisplay/index.html#epaperdisplay.EPaperDisplay
https://docs.circuitpython.org/en/latest/shared-bindings/epaperdisplay/index.html#epaperdisplay.EPaperDisplay

Coordinate System

Two dimensional (2D) information is used throughout the displayio library.
The 2D objects have an associated width and height, usually in units of
pixels. Locating things, like pixels, within these 2D areas is done using x and
y coordinates. Here's an example with width=4 and height=3:

Note the following:

the origin is in the upper left hand corner
y is positive in the down direction
the first pixel is at (0, 0) and the last pixel is at (3, 2), which
corresponds to (width - 1, height - 1).

Hierarchy and Nesting

The image at the top of this page is an example of the most simple
arrangement of displayio objects. It's a good visual reference for the
general hierarchy. However, much more complex arrangements are possible.
Keep in mind these general rules:

A Display can only show a Group.

•
•
•

•

A Display can only show one Group at any time. This is called the root
group.
A Group can contain one or more TileGrids as well as one or more
Groups.

So, for example, you could have something like the arrangement shown
below. The Bitmap and Palette associated with each TileGrid have been
left out for simplicity.

Bitmap and Palette
The Bitmap and Palette classes work together to generate colored pixels.
So let's discuss them together.

•

•

Bitmap

This one is nice and easy. It's a 2D array of pixels. Each bitmap is width
pixels wide and height pixels tall. Each pixel contains a value and you
specify the maximum number of possible values with value_count. You can
think of this as the total number of colors if you want.

Here is how you would create a bitmap 320 pixels wide, 240 pixels high,
with each pixel having 3 possible values.

bitmap = displayio.Bitmap(320, 240, 3)

Here is how you would set the pixel at (x, y) = (23, 42) to a value of 2:

bitmap[23, 42] = 2

Note that the maximum x value is width - 1, the maximum y value is
height - 1 and the maximum pixel value is value_count - 1. This is due
to the zero based indexing. Similarly, the first pixel and color value are all at
0.

Palette

This is also pretty straight forward. It is a simple list of color values. You
specify the total number of colors with color_count.

Here is how you would create a palette with 3 total colors:

palette = displayio.Palette(3)

Here is how you would specify the color for each entry:

palette[0] = 0xFF0000 # red
palette[1] = 0x00FF00 # green
palette[2] = 0x0000FF # blue

Note how the last entry is at color_count - 1.

Bitmap + Palette

Think of the Bitmap and Palette working together like this:

TileGrid
If all we wanted to do was display an entire bitmap image onto our display,
we could probably stop here. We could just do something like
display.root_group = bitmap and our bitmap would show up. However,
the CircuitPython displayio library adds a few extra layers to the mix. This
is done for good reason (spoiler alert = games), but it may initially seem
overly complex and confusing. Hopefully we can help clear that up here.

Let's start with the first item, the TileGrid class.

TileGrid

The TileGrid class slices up a source bitmap into multiple rectangular
regions called tiles. You can have one or more tiles arranged in a 2D array
called a grid. Thus the name TileGrid.

You specify the source bitmap with bitmap and you also need an associated
pixel_shader to generate the pixel colors.

Then, you specify how many tiles the TileGrid will have using width and
height. These are the number of tiles, not the number of pixels. The size of
each tile will be the same and is specified by tile_width and tile_height.
These are in units of pixels. Furthermore, the number must evenly divide
into the source bitmap's dimensions. So you can't just specify anything. You
can specify the initial contents of the tiles using default_tile. This is an
index into the source bitmap's tiles and it can be changed later for each
individual tile.

Finally, as we will see later, a TileGrid will be added to a Group. You specify
the 2D location of the TileGrid relative to the Group with x and y.

Changing a Tile

In the example above, each tile has the default index of 0. This index refers
to the tile index in the Source Bitmap. You can reassign any tile in the
TileGrid to any of the available indices from the Source Bitmap. To do so,
use the syntax:

tile_grid[tile_grid_index] = source_index

The tile_grid_index can either be the integer number for the tile index or
an (x, y) tuple - both notations are shown in the TileGrid example above. The
source_index is the integer number from the Source Bitmap - also shown in
the example above.

Using our example from above, if we did something like this:

tile_grid[0] = 9
tile_grid[1] = 5
tile_grid[2] = 3
tile_grid[3] = 0

or this, which uses the other notation:

tile_grid[0, 0] = 9
tile_grid[1, 0] = 5
tile_grid[0, 1] = 3
tile_grid[1, 1] = 0

We would end up with something like this:

Note that nothing is changing in the Source Bitmap. Only the TileGrid is
changed. You can do this over and over as many times as you want.

Also note that only the TileGrid will eventually be shown on the display. The
Source Bitmap just lives in memory and serves up the graphical data used
by the TileGrid.

Group
OK, can we please draw something on the display now? Not just yet. Sorry.
We're close. Very close. Just one more item to talk about - the Group.

Bitmap and Palette work together to actually make colored pixels. They
both get sent to a TileGrid, which allows for some fancy slicing and dicing
of the bitmap (if you want to). You can have more than one TileGrid. To
collect them all together for final display, you put them into a Group. You
can even add a Group to a Group. This allows for some really fancy nesting
and drawing.

So let's talk about the Group class. It's actually not that complex.

Group Adding/Removing

The Group class is pretty simple. It's just a collection of TileGrids that you
have created. It also allows for nesting other Groups (subgroups) within a
Group.

Add items to the Group using append() or insert(). The append()
command adds the item to the end while the insert() command allows
specifying an index location. You can also change an item directly using
index notation, ex: group[index] = tilegrid.

Remove items using pop() or remove(). The pop() command can take an
index to pop the ith item, otherwise it removes the last one. The remove()
command allows specifying the specific item within the Group to remove.

Group Position

The Group will appear on the screen rooted at the location you specify with
x and y. All the items in the Group are positioned relative to this root
location (remember TileGrid has x and y also).

Group Scale

You can also scale the entire contents of the Group using scale. This is a
simple integer scaling factor. 1 is normal, 2 is twice as big, etc.

Group Visibility

The hidden property of the Group can be used to set whether the contents
of the Group are to be shown or not. Set True to hide (won't be shown) or
False to show. By default, this is set to False so items are shown.

Group Content Limits

In older versions of CircuitPython Group was restricted to a maximum
number of items. That number was specified by the user code so enough
memory space would be created.

However, newer releases allow updating the group to grow as new items are
appended so there isn't a specific maximum any longer.

Summary

The Group is what we will finally show on our Display. The end result looks
something like this:

This shows a notional Group located at (x, y) on the Display. It contains 3
TileGrids of differing size, shape, and location. Note that the TileGrid
locations, specified by their own (x, y) values, are relative to the Group. The
values can be negative, like the x value for [1]. Also note how the TileGrid
stored in Group index [2] overlaps and is shown above the TileGrid stored
in index [0]. This is how "z ordering" works within a Group.

Display and Display Bus
OK, let's setup an actual display so we can start showing stuff. There are two
parts to this - the display itself, called Display, and how it is connected to
the host controller via some "display bus" like FourWire, ParallelBus. etc.

You first setup the display bus specific to your setup, be it FourWire,
ParallelBus, etc. Then, when you setup your Display, you will pass this in
so it can be used.

The display bus classes were moved from displayio to separate classes in
CircuitPython 9. See https://learn.adafruit.com/circuitpython-display-
support-using-displayio/faqs#faq-3167831 for details.

FourWire

The FourWire class is used to talk to displays over a spi_bus using the
typical four pins associated with SPI - SCK, MOSI, MISO, and CS (aka,
chip_select). One additional pin needed for the display is a pin to indicate
if the information being sent over the bus is "data" (image information) or
"command" (display control). This is done with the D/C pin specified via the
command parameter.

To setup a FourWire bus, you would first create a spi_bus object in the
normal way. You would then pass that in, along with specifications for the
command and chip_select pins to use.

Here's the basic usage example for hardware SPI:

display_bus = displayio.FourWire(
 board.SPI(),
 command=board.D10,
 chip_select=board.D9,
)

https://learn.adafruit.com/circuitpython-display-support-using-displayio/faqs#faq-3167831
https://learn.adafruit.com/circuitpython-display-support-using-displayio/faqs#faq-3167831

I2CDisplay

The I2CDisplay class is used to talk to displays over an i2c_bus. You specify
the display device_address like you typically would for an I2C device. An
optional reset pin can also be specified.

To setup an I2CDisplay bus, you would first create an i2c_bus object and
then pass that in along with the device_address. Here's the basic usage
example:

display_bus = displayio.I2CDisplay(
board.I2C(),
device_address=0x3D,

)

ParallelBus

A parallel bus is fast, but it takes a lot of pins. You'll need 8 pins for the main
data, and they need to be in consecutive order on one of the
microcontroller's ports and the first pin has to be on port number 0, 7, 15, or
23 (so we can write the byte in a single DMA command). Then you specify
the first pin for data0 and the rest (the other 7) are inferred. Then you need
4 more digital pins that can be used for command, chip_select, write, and
read. Oof. That's 12 pins.

The biggest road block will be finding a microcontroller with all those pins
AND with 8 consecutive pins on the same port. What does "port" mean? It
refers to something lower level that you may not generally worry about.
Think of it as a group of pins that can be collectively manipulated quickly via
commands that operate on the entire port.

How do you find 8 consecutive port pins? We'll, if you're starting from
scratch, it'll take a bit on investigating. Here's one example. Take a look at
the Metro M4 Express schematic (https://adafru.it/EFB) and look in the
general area where pin D13 is shown:

https://learn.adafruit.com/adafruit-metro-m4-express-featuring-atsamd51/downloads#schematic-and-fabrication-print-11-2

For example, D13 is wired to physical pin 35 which has several functions
internally. The important one to note is PA16. This refers to the digital I/O on
Port A at 16. Note that the pins below D13 go consecutively from PA16 to
PA23. That's 8 pins on Port A we can use!

So, for a Metro M4 Express, you could use pins D13, D12, D10, D11, D9, D8,
D1, and D0 for your 8 data pins. Then just pick any other 4 for the others.

display_bus = paralleldisplaybus.ParallelBus(
 data0=board.D13,
 command=board.D7,
 chip_select=board.D6,
 write=board.D5,
 read=board.D4,
)

Display

To setup a Display you need four things:

A display bus (display_bus) for actually talking to the display.
An initialization sequence (init_sequence) to be used to setup the
display for initial use
The width and...
The height of the display in pixels.

In general, you'll know the width and height for whatever display you are
working with. The display_bus is one of the available display buses setup
as described above. The init_sequence takes a bit of work to come up with.
Typically it comes from reading datasheets or other sources. We'll talk more
about this below. For now, just assume you have it created in something
called INIT_SEQUENCE.

The basic Display setup would then look like this:

display = dispalyio.Display(
 display_bus,
 INIT_SEQUENCE,
 width=320,
 height=240,
)

Display Drivers

The init sequence (init_sequence) is a bit of a cryptic mess. We've worked
it out for some displays and have created some light weight drivers that take
care of the boiler plate. Instead of creating a Display object from scratch,
you can use these drivers (and maybe more, check the guide for your
display):

ILI9341 (https://adafru.it/EFC) - color TFTs

•
•

•
•

•

https://github.com/adafruit/Adafruit_CircuitPython_ILI9341

SSD1331 (https://adafru.it/EFD) - color OLEDs
ST7789 (https://adafru.it/EFE) - wide angle color TFT
HX8357 (https://adafru.it/EFF) - color TFT
ST7735R (https://adafru.it/19el) - color TFT

Then you would create your display like this:

display = adafruit_ili9341.ILI9341(display_bus,
 width=320,
 height=240)

Note that it's basically the same as using Display, just without the
init_sequence. That's taken care of for you.

Boards with Built In Displays

If you have a board like a HalloWing (http://adafru.it/3900), PyPortal (http://
adafru.it/4116), CLUE (http://adafru.it/4500), etc. that already has a display
attached, then all this work has been done for you - both the setting up of
the display bus and the display itself. The CircuitPython firmware build for
these boards has the display ready to go. It is available via the DISPLAY
object found in the board module. All you need to do is:

import board
display = board.DISPLAY

Boards without Built In Displays

If you have a more generic main board, like a Feather (https://adafru.it/Dij)
or Matrix Portal (https://adafru.it/NDR), then you will need to create the
display manually as described above. This means there will not be a
board.DISPLAY available in the Circuit Python firmware.

For OLED and TFT FeatherWings or breakouts, see examples in their
associated library.
For RGB matrices with the Matrix Portal, checkout the MatrixPortal
Library (https://adafru.it/OCK).

Using a Display

Once a Display is setup, use the root_group property to specify the Group
to use for displaying items on the screen. Creating a Group and the
associated TileGrid(s) and Bitmap(s) and Palette(s) has been covered
previously in this guide. Once you have your Group setup and ready to go,
it's just a matter of calling:

display.root_group = group

For CircuitPython versions prior to 8.0, use display.show(group) instead.

•
•
•
•

•

•

https://github.com/adafruit/Adafruit_CircuitPython_SSD1331/blob/master/adafruit_ssd1331.py
https://github.com/adafruit/Adafruit_CircuitPython_ST7789
https://github.com/adafruit/Adafruit_CircuitPython_HX8357
https://github.com/adafruit/Adafruit_CircuitPython_ST7735R
https://github.com/adafruit/Adafruit_CircuitPython_ST7735R
https://www.adafruit.com/product/3900
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4500
https://learn.adafruit.com/adafruit-feather
https://learn.adafruit.com/adafruit-matrixportal-m4
https://learn.adafruit.com/adafruit-matrixportal-m4/matrixportal-library-overview
https://learn.adafruit.com/adafruit-matrixportal-m4/matrixportal-library-overview

Keep in mind that while a Display can only show one Group (the so called
root group), multiple Groups can be nested within the root group for
more complex layouts.

Releasing Displays

Once you've created your display instance, the CircuitPython firmware will
remember the setup between soft resets. This helps facilitate showing the
serial output on the display, which can be useful for seeing error messages,
etc.. Because of this behavior, you may run into an issue similar to what is
shown below:

To avoid this issue, you can use the release_displays() command in
displayio (https://adafru.it/MAr). Call this before creating your display
bus. You can tuck this call in somewhere up near the top of your code. For
example:

import board
import i2cdisplaybus
import adafruit_ssd1327

release any currently configured displays
displayio.release_displays()

go through display setup as normal
display_bus = displayio.I2CDisplay(board.I2C(), device_address=0x3D)
display = adafruit_ssd1327.SSD1327(display_bus, width=128, height=128)

#
use display as you wish
#

Now the code will run without errors with each soft reset.

You do not need to do this for boards with built in displays. For those
cases, the release gets taken care of for you as part of the internal display
creation which provides the board.DISPLAY instance.

https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/#displayio.release_displays

EPaperDisplay
The EPaperDisplay class is similar to the Display class discussed
previously, but is specific to electronic paper display (aka EPD, eInk, epaper,
etc.) hardware.

Also much like Display, you rarely, if ever, will use the EPaperDisplay class
directly. Instead, you will use a library which takes care of display specific
setup for the many available EPD breakouts and boards. Some examples
include:

SSD1608 (https://adafru.it/ZaU)
SSD1675 (https://adafru.it/ZaV)
IL91874 (https://adafru.it/ZaW)
IL0398 (https://adafru.it/ZaX)
IL0373 (https://adafru.it/ZaY)

If you have one of those EPDs, you can just use the corresponding library.
The code there can be useful as examples for other EPDs.

Boards with Built in EPDs

If you are using a board with a built in EPD, like the Adafruit MagTag (http://
adafru.it/4800), then an EPaperDisplay will already be setup for you in the
CircuitPython firmware. You can access it simply with:

import board
epd = board.DISPLAY

EPD Usage

The general usage of EPaperDisplay is much like regular Display. Use
display.root_group to establish what Group will be shown. There are
width and height properties available to query display size. There is also a
rotation property that can be used to query / set rotation.

To actually display the Group, you call refresh(). However, there are EPD
specific things which must be taken into account. We discuss those next.

EPD Specific Behavior

EPDs are fundamentally different hardware than other displays like TFTs.
The main difference is that they are slow to display and are limited in how
often they can be refreshed. Therefore EPDs do not auto refresh.

EPaperDisplays do not auto refresh. You must call refresh() unless a library
does that for you.

•
•
•
•
•

https://github.com/adafruit/Adafruit_CircuitPython_SSD1608
https://github.com/adafruit/Adafruit_CircuitPython_SSD1675
https://github.com/adafruit/Adafruit_CircuitPython_IL91874
https://github.com/adafruit/Adafruit_CircuitPython_IL0398
https://github.com/adafruit/Adafruit_CircuitPython_IL0373
https://www.adafruit.com/product/4800

To refresh the display, you simply call refresh(). However, to take care of
the slowness and refresh limit, these additional properties are important:

time_to_refresh - This is the time, in seconds, until you can refresh
the display. If you call refresh() too soon, you will throw an exception.
busy - This is True while the display is in the process of refreshing. Use
this if you want to make sure the display refresh is complete before
doing something else.

Here is a simple example of how these properties might get used:

wait until we can actually refresh
time.sleep(epd.time_to_refresh)
refresh the display
epd.refresh()
(optional) wait until display is fully updated
while epd.busy:

pass
display is now updated

The exact usage would depend on your specific application. For example,
you are free to move on to other things without querying busy. However, if
you did something like immediately enter deep sleep after calling
refresh(), you would want make sure the display is fully updated before
doing so.

Also realize that you most likely can not call refresh() again immediately
after busy is complete. You still need to use time_to_refresh appropriately.
For example, the display may update in 5 seconds (busy becomes False) but
can only be refreshed once every 60 seconds (time_to_refresh is > 0).

Examples
CircuitPython Firmware
https://adafru.it/Em8

These are some basic examples that cover some common use cases. They
are intentionally crude and simple so that just the functional aspects of the
displayio library can be seen. A fun thing to do would be to take one of
these examples and modify it to try and add something new. Change the text
color, make a sprite move around, etc.

A Note on Display Setup

Most of these examples assume a board with a built in display. See the
Display and Display Bus (https://adafru.it/Uam) section for information on
built in vs. external displays. If you are not using a board with a built in
display, then this line:

display = board.DISPLAY

•

•

https://circuitpython.org/downloads
https://learn.adafruit.com/circuitpython-display-support-using-displayio/display-and-display-bus

in the examples will not work. That would need to be substituted for lines
that configure an external display.

Text
What about text? How do you print "Hello World" to the display? Where is
text support in displayio?!?!

It's not actually in the core library. Instead, it is provided by a set of external
libraries, each which takes care of a certain aspect.

Display Text

The CircuitPython Display Text Library (https://adafru.it/FiA) is used to
create text elements you can then display. We cover the basics here, but
checkout this guide for more info:

CircuitPython Display_Text Library
https://adafru.it/Rof

Bitmap Fonts

The CircuitPython Bitmap Font Library (https://adafru.it/DZl) provides
support for using custom fonts. We show a simple example here, but
checkout this guide for more info:

Custom Fonts for CircuitPython Displays
https://adafru.it/EFI

Basic Text with Built in Font

The workhorse item is the Label, which is essentially a Group containing all
the characters of the text. So once it's created, you use it like you would a
Group.

Creating a Label is pretty straight forward - you give it the text, font, and
color to use. You specify the text location using x and y.

In general, you always need to specify a font to use for the text. The next
section shows how to load custom font files. However, a simple built in font
is provided so that you can display text without needing a font file. It is
available from terminalio.FONT.

Here's a basic Hello World example:

Example assumes board with a built in display.

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#
SPDX-License-Identifier: MIT

https://github.com/adafruit/Adafruit_CircuitPython_Display_Text
https://learn.adafruit.com/circuitpython-display_text-library/overview
https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font/
https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display/overview

import board
import terminalio
from adafruit_display_text import label

display = board.DISPLAY

Set text, font, and color
text = "HELLO WORLD"
font = terminalio.FONT
color = 0x0000FF

Create the text label
text_area = label.Label(font, text=text, color=color)

Set the location
text_area.x = 100
text_area.y = 80

Show it
display.root_group = text_area

Loop forever so you can enjoy your image
while True:

pass

Using Bitmap Fonts

You can also load fonts from external files in Bitmap Distribution Format
(.bdf) or the binary Portable Compiled Format (.pcf) . Check out the Custom
Fonts for CircuitPython Displays (https://adafru.it/EFI) guide for more
information about how to create your own font files.

Here we show a basic BDF example. First, copy the font file to your
CIRCUITPY folder somewhere. You then load it using load_font() as shown
below. The rest is the same as the example above.

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
from adafruit_bitmap_font import bitmap_font
from adafruit_display_text import label

display = board.DISPLAY

Set text, font, and color
text = "HELLO WORLD"
font = bitmap_font.load_font("/Helvetica-Bold-16.bdf")
color = 0xFF00FF

https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display/overview
https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display/overview

Create the tet label
text_area = label.Label(font, text=text, color=color)

Set the location
text_area.x = 20
text_area.y = 20

Show it
display.root_group = text_area

Loop forever so you can enjoy your text
while True:

pass

To run the example above, you'll need this font file:

Helvetica-Bold-16.bdf
https://adafru.it/EFJ
Note: the font file should be on the board's CIRCUITPY flash drive. In the
example above, the main (root) directory / is used, but in some tutorials, a
new subdirectory /font is created for font files. Just be sure your load_font
has the correct directory to the font file in your project.

Text Positioning

When setting text location using the x and y properties, you are setting the
origin point. It is located relative to the text as shown below.

Alternatively, thanks to more recent updates (https://adafru.it/IUe) to the
CircuitPython Display Text (https://adafru.it/FiA) library, you can now
change the anchor point used to locate the text label. You do so by using the
anchor_point property of the label and giving it an (x, y) tuple, like this:

label.anchor_point = (0.1, 0.8)

The values range from 0 to 1 with x being the horizontal and y being the
vertical. The origin is in the upper left corner. A value of 0 is at the origin. A
value of 1 is all the way to the right/down.

Here are some example locations:

https://raw.githubusercontent.com/adafruit/Adafruit_Learning_System_Guides/master/PyPortal_Astronauts/fonts/Helvetica-Bold-16.bdf
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/releases/tag/2.2.0
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

You can then set the position of the label on the display using the
anchored_position property and also specifying an (x, y) tuple. But this
time, the values are actual screen coordinates in pixels, like this:

label.anchored_position = (120, 85)

See the example program linked below for lots of common example use
cases:

display_text_anchored_position.py
https://adafru.it/PEa

Changing Text

If you ever want to change the text of a label, you can do this:

text_area.text = "NEW TEXT"

However, the new text length can not be longer than what was originally
specified when the label was created. So you have to know the expected max
number of characters ahead of time. One easy way to do this when creating
the label is with something like:

text_area = label.Label(font, text=" "*20)

where 20 is the character count, i.e. the maximum number of characters the
label can display.

Display a Bitmap
This example shows how to load and display a bitmap (.bmp) file. We will
still need to create all the pieces - a TileGrid, a Group, etc. But they can be
used in their most simple way.

https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/blob/master/examples/display_text_anchored_position.py

BMP File Format

Not all BMP file formats are supported. You will need to make sure you have
an indexed BMP file. Follow the link below for some good info on how to
convert or create such a BMP file:

Indexed BMP Graphics
https://adafru.it/MbZ

OnDiskBitmap

First, let's use OnDiskBitmap to source the bitmap image directly from flash
memory storage. This is like reading the image from disk instead of loading
it into memory first (we'll do that next). The trade off here is the reduced use
of memory for potentially slower pixel draw times.

We'll use a 320x240 pixel image. Here's the image:

purple.bmp
https://adafru.it/EFK

Here's the code:

Example assumes board with a built in display.

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import displayio

display = board.DISPLAY

Setup the file as the bitmap data source
bitmap = displayio.OnDiskBitmap("/purple.bmp")

Create a TileGrid to hold the bitmap
tile_grid = displayio.TileGrid(bitmap, pixel_shader=bitmap.pixel_shader)

Create a Group to hold the TileGrid
group = displayio.Group()

Add the TileGrid to the Group
group.append(tile_grid)

Add the Group to the Display
display.root_group = group

Loop forever so you can enjoy your image

https://learn.adafruit.com/creating-your-first-tilemap-game-with-circuitpython/indexed-bmp-graphics
https://cdn-learn.adafruit.com/assets/assets/000/074/681/original/purple.bmp?1555717198

while True:
pass

ImageLoad

This approach use the CircuitPython Image Load (https://adafru.it/EFL)
library to load the image into memory and then display it. Using the same
image from above, here's the code:

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import displayio
import adafruit_imageload

display = board.DISPLAY

bitmap, palette = adafruit_imageload.load("/purple.bmp",
bitmap=displayio.Bitmap,
palette=displayio.Palette)

Create a TileGrid to hold the bitmap
tile_grid = displayio.TileGrid(bitmap, pixel_shader=palette)

Create a Group to hold the TileGrid
group = displayio.Group()

Add the TileGrid to the Group
group.append(tile_grid)

Add the Group to the Display
display.root_group = group

Loop forever so you can enjoy your image
while True:

pass

Draw Pixels
Do you want to just set a specific pixel to a specific color? Here's how. Most
of the code is the setup of necessary parts - the TileGrid, Palette, and
Group. But once everything is setup, you can access pixels with the simple
syntax:

bitmap[x, y] = color_value

Remember that color_value is not an actual color, but a reference to the
associated Palette.

https://github.com/adafruit/Adafruit_CircuitPython_ImageLoad

Here's a full example:

Example assumes board with a built in display.

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import displayio

display = board.DISPLAY

Create a bitmap with two colors
bitmap = displayio.Bitmap(display.width, display.height, 2)

Create a two color palette
palette = displayio.Palette(2)
palette[0] = 0x000000
palette[1] = 0xffffff

Create a TileGrid using the Bitmap and Palette
tile_grid = displayio.TileGrid(bitmap, pixel_shader=palette)

Create a Group
group = displayio.Group()

Add the TileGrid to the Group
group.append(tile_grid)

Add the Group to the Display
display.root_group = group

Draw a pixel
bitmap[80, 50] = 1

Draw even more pixels
for x in range(150, 170):

for y in range(100, 110):
bitmap[x, y] = 1

Loop forever so you can enjoy your image
while True:

pass

Sprite Sheet
This example is simple, but shows a basic usage of what makes TileGrid so
cool. While you can create a TileGrid with multiple tiles, you can also create
a TileGrid with just a single tile. This special case is often referred to as a
"sprite". You still need a source Bitmap for the TileGrid. So we use one

that contains several sprites all arranged nicely. This is called a "sprite
sheet".

Here's a nice little sprite sheet bitmap we will use for this example:

cp_sprite_sheet.bmp
https://adafru.it/EFM

It's super tiny! If you zoom in, it looks like this:

Let's add a grid overlay to better show each individual pixel:

https://cdn-learn.adafruit.com/assets/assets/000/074/925/original/cp_sprite_sheet.bmp?1556152347

You can see how there are 6 total sprites. Each sprite is 16 pixels wide by 16
pixels high. We want to slice it up like this:

Remember, this is not the TileGrid. This is just how the source bitmap is
sliced up to provide source tiles for the TileGrid.

We will create a TileGrid with only one tile (sprite). We can then change the
index of this TileGrid to be whichever of these 6 characters from the source
bitmap (sprite sheet) we want to show. And we can change it again to show a
different one, etc.

We have everything we need:

A source Bitmap - the sprite sheet
We know each sprite is 16 pixels by 16 pixels

tile_width = 16
tile_height = 16

We know we want a TileGrid that is only 1 wide by 1 high
width = 1
height = 1

Here is what creating the TileGrid would look like to set this up:

sprite = displayio.TileGrid(sprite_sheet, pixel_shader=palette,
 width = 1,
 height = 1,
 tile_width = 16,
 tile_height = 16)

By default, the source index will be 0 to start with. So the sprite is set to
show Blinka (the purple snake). You can change it to any of the other 6
sprites using the syntax:

sprite[0] = 1

Now the sprite is set to show Adabot - index 1. Note that the sprite index is
[0], which is the only index that applies in this case, since there's only 1 tile
in the TileGrid.

Want Sparky? Do this:

•
•

◦
◦

•
◦
◦

sprite[0] = 4

And so on.

Sprite Sheet Example

Here's the full code. It loads the source Bitmap, sets up the TileGrid, adds
it to a Group, which is then added to the Display so it's finally shown. It
then cycles through each of the sprites.

Example assumes board with a built in display.

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time
import board
import displayio
import adafruit_imageload

display = board.DISPLAY

Load the sprite sheet (bitmap)
sprite_sheet, palette = adafruit_imageload.load("/cp_sprite_sheet.bmp",

bitmap=displayio.Bitmap,
palette=displayio.Palette)

Create a sprite (tilegrid)
sprite = displayio.TileGrid(sprite_sheet, pixel_shader=palette,

width = 1,
height = 1,
tile_width = 16,
tile_height = 16)

Create a Group to hold the sprite
group = displayio.Group(scale=1)

Add the sprite to the Group
group.append(sprite)

Add the Group to the Display
display.root_group = group

Set sprite location
group.x = 120
group.y = 80

Loop through each sprite in the sprite sheet
source_index = 0
while True:

sprite[0] = source_index % 6
source_index += 1
time.sleep(2)

Change The Scale!

The sprites are pretty small. The default scale is 1, so each pixel of the sprite
is a pixel on the display. You can change this using the scale parameter
which is passed in when creating the Group.

Try changing that to something like 2 or 4 and running the code again. It's
this line of code:

group = displayio.Group(scale=1)

Now the sprites should show up much larger!

Change The Location!

Want the sprites to show up in a different location? You can do so by
changing these lines and setting new values for x and y.

group.x = 120
group.y = 80

Multiple TileGrids
This example builds on the Sprite Sheet example to show a more
sophisticated usage of TileGrid. We'll show how you can have more than
one TileGrid and that a TileGrid can be more than just one tile.

The castle wall tiles used in this example were borrowed from this excellent
tilesheet: dungeontileset-ii (https://adafru.it/EFN)

A Sprite and Its Castle

Our first TileGrid will be another sprite - so a TileGrid with a single tile.
This is the same as was done in the Sprite Sheet example. Our second
TileGrid will be a little more interesting. It will have more than one tile and
will be used to generate the walls and floor of a 2D castle for our sprite to
live in.

The idea is to generate the walls and floors by reusing the same source tile
over and over. For example, we can create something that looks like this:

https://0x72.itch.io/dungeontileset-ii

You can kind of already see the grid like repetitive pattern. Let's put a
reference grid over the top:

This grid is 6 tiles wide by 5 tiles high. You can see how the floor is just the
same tile over and over. The walls can similarly be created by reusing the
same source tile. So we just need a source bitmap that has each of these
basic building pieces. It can come from the same bitmap we'll use for our
sprite. Let's do that - here's our new sprite sheet we will work with:

castle_sprite_sheet.bmp
https://adafru.it/EFO

Another super tiny BMP! Here's what it looks like more blown up:

https://cdn-learn.adafruit.com/assets/assets/000/075/025/original/castle_sprite_sheet.bmp?1556343110

There are a couple of characters we can use for our sprite at the top. But
there's also the basic building blocks needed for our castle.

For this example, each item is 16 pixels by 16 pixels. So we'll end up carving
up the sprite sheet like this:

As mentioned above, our castle is 6 tiles wide by 5 tiles high. So that will be
the size of the TileGrid we'll create to generate the castle. Then, each tile in
the castle TileGrid just needs to be set to the correct index from the source
bitmap.

Here's what that would look like:

But keep in mind this is only one of the TileGrids we'll create. The other is
our simple single tile TileGrid - the sprite. It comes from the same sprite
sheet.

Think of it working like this:

And we can assign the single tile of sprite or any of the tiles of castle to any
of the indices from sprite_sheet. The (x, y) notation for a couple of tiles in
castle are shown as a helpful reminded of how they are accessed.

For example, to set the lower right corner located at (5, 4) of the castle to
the "lower right corner" graphic found at index 11 in the sprite_sheet, do
this:

castle[5, 4] = 11

But of course we need to set all of the tiles. This just ends up being more
lines of code.

Here's the full code:

Example assumes board with a built in display.

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#

SPDX-License-Identifier: MIT

import board
import displayio
import adafruit_imageload

display = board.DISPLAY

Load the sprite sheet (bitmap)
sprite_sheet, palette = adafruit_imageload.load("/castle_sprite_sheet.bmp",

bitmap=displayio.Bitmap,
palette=displayio.Palette)

Create the sprite TileGrid
sprite = displayio.TileGrid(sprite_sheet, pixel_shader=palette,

width = 1,
height = 1,
tile_width = 16,
tile_height = 16,
default_tile = 0)

Create the castle TileGrid
castle = displayio.TileGrid(sprite_sheet, pixel_shader=palette,

width = 6,
height = 5,
tile_width = 16,
tile_height = 16)

Create a Group to hold the sprite and add it
sprite_group = displayio.Group()
sprite_group.append(sprite)

Create a Group to hold the castle and add it
castle_group = displayio.Group(scale=3)
castle_group.append(castle)

Create a Group to hold the sprite and castle
group = displayio.Group()

Add the sprite and castle to the group
group.append(castle_group)
group.append(sprite_group)

Castle tile assignments
corners
castle[0, 0] = 3 # upper left
castle[5, 0] = 5 # upper right
castle[0, 4] = 9 # lower left
castle[5, 4] = 11 # lower right
top / bottom walls
for x in range(1, 5):

castle[x, 0] = 4 # top

castle[x, 4] = 10 # bottom
left/ right walls
for y in range(1, 4):

castle[0, y] = 6 # left
castle[5, y] = 8 # right

floor
for x in range(1, 5):

for y in range(1, 4):
castle[x, y] = 7 # floor

put the sprite somewhere in the castle
sprite.x = 110
sprite.y = 70

Add the Group to the Display
display.root_group = group

Loop forever so you can enjoy your image
while True:

pass

If you run that, you should end up with something like this:

Order Matters

Note the order in which the sprite_group and the castle_group were
added to the main group that was finally shown on the display.

group.append(castle_group)
group.append(sprite_group)

Think of it as building from the bottom up or outward from the display. Each
new item will be shown above the previous items. Since we want our sprite
to be seen above the castle, we add (append) it after we add the castle.

Using Different Scale

This example shows how you can mix different scales if you want. Since
scale is used at the Group level and applies to everything in the Group, we
created two separate Groups for the sprite and castle. That way we could set
a different scale for the castle.

You don't have to do this. We could have just added the sprite and castle to
the same Group. But this shows how there is flexibility in how you setup
your collection of items that you send to the display.

Change The Sprite

Want Adabot to be in the castle instead of Blinka? All you need to do is
change the source index for the sprite tile. There are two ways you could do
this.

The first would be to use the default_tile parameter assignment when
creating the TileGrid. In the code above, it was set to 0. If you wanted
Adabot, you would change it to 1.

The second way would be to just set it after the TileGrid is created. That
would look like this:

sprite[0] = 1

Change Sprite Location

Want Blinka to be somewhere else in the castle? Simple, just change the x
and y values here:

sprite.x = 110
sprite.y = 70

Even more fun - write a loop with these changing inside the loop. Then
Blinka will be moving around in the castle!

External Display
This example shows how to use a display on a breakout board using a SPI
interface.

The Hard Way

Assuming you read through the datasheet(s) and somehow came up with the
initialization sequence you needed for your display, you could do something
like this.

This example was tested using a 2.4" TFT breakout wired to an Itsy Bitsy
M4's hardware SPI pins. See here for display wiring information:

2.4" TFT SPI Wiring
https://adafru.it/EFP

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import displayio

Release any previously configured displays
displayio.release_displays()

Setup SPI bus
spi_bus = board.SPI()

Digital pins to use
tft_cs = board.D10
tft_dc = board.D9

Setup the display bus
display_bus = displayio.FourWire(spi_bus, command=tft_dc, chip_select=tft_cs)

Setup the initialization sequence
stolen from adafruit_ili9341.py
INIT_SEQUENCE = (

b"\x01\x80\x80" # Software reset then delay 0x80 (128ms)
b"\xEF\x03\x03\x80\x02"
b"\xCF\x03\x00\xC1\x30"
b"\xED\x04\x64\x03\x12\x81"
b"\xE8\x03\x85\x00\x78"
b"\xCB\x05\x39\x2C\x00\x34\x02"
b"\xF7\x01\x20"
b"\xEA\x02\x00\x00"
b"\xc0\x01\x23" # Power control VRH[5:0]
b"\xc1\x01\x10" # Power control SAP[2:0];BT[3:0]
b"\xc5\x02\x3e\x28" # VCM control
b"\xc7\x01\x86" # VCM control2
b"\x36\x01\x38" # Memory Access Control
b"\x37\x01\x00" # Vertical scroll zero
b"\x3a\x01\x55" # COLMOD: Pixel Format Set
b"\xb1\x02\x00\x18" # Frame Rate Control (In Normal Mode/Full Colors)
b"\xb6\x03\x08\x82\x27" # Display Function Control
b"\xF2\x01\x00" # 3Gamma Function Disable
b"\x26\x01\x01" # Gamma curve selected
b"\xe0\x0f\x0F\x31\x2B\x0C\x0E\x08\x4E\xF1\x37\x07\x10\x03\x0E\x09\x00" # Set Gamma
b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\x0F" # Set Gamma
b"\x11\x80\x78" # Exit Sleep then delay 0x78 (120ms)
b"\x29\x80\x78" # Display on then delay 0x78 (120ms)

https://learn.adafruit.com/adafruit-2-4-color-tft-touchscreen-breakout/spi-wiring-test

)

Setup the Display
display = displayio.Display(display_bus, INIT_SEQUENCE, width=320, height=240)

#
DONE - now you can use the display however you want
#

bitmap = displayio.Bitmap(320, 240, 2)

palette = displayio.Palette(2)
palette[0] = 0
palette[1] = 0xFFFFFF

for x in range(10, 20):
for y in range(10, 20):

bitmap[x, y] = 1

tile_grid = displayio.TileGrid(bitmap, pixel_shader=palette)

group = displayio.Group()
group.append(tile_grid)
display.root_group = group

Loop forever so you can enjoy your image
while True:

pass

The Easy Way

Use a driver instead. This will take care of the initialization sequence for
you. Here we use the ILI9341 driver (https://adafru.it/EFC).

SPDX-FileCopyrightText: 2019 Carter Nelson for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import displayio
import adafruit_ili9341

Release any previously configured displays
displayio.release_displays()

Setup SPI bus
spi_bus = board.SPI()

Digital pins to use
tft_cs = board.D10
tft_dc = board.D9

https://github.com/adafruit/Adafruit_CircuitPython_ILI9341

Setup the display bus
display_bus = displayio.FourWire(spi_bus, command=tft_dc, chip_select=tft_cs)

Setup the Display
display = adafruit_ili9341.ILI9341(display_bus, width=320, height=240)

#
DONE - now you can use the display however you want
#

bitmap = displayio.Bitmap(320, 240, 2)

palette = displayio.Palette(2)
palette[0] = 0
palette[1] = 0xFFFFFF

for x in range(10, 20):
for y in range(10, 20):

bitmap[x, y] = 1

tile_grid = displayio.TileGrid(bitmap, pixel_shader=palette)

group = displayio.Group()
group.append(tile_grid)
display.root_group = group

Loop forever so you can enjoy your image
while True:

pass

For displays in the Adafruit shop, there should be (or will be) a
CircuitPython driver for each one. One driver might handle more than one
product. They are designated by chipset number, like ILI9341. Look at the
Adafruit product page to see which chipset the Adafruit product uses and
then look for the corresponding Adafruit CircuitPython driver. Then you do
not have to deal with the low level initialization.

If you have a non-Adafruit display, you might be able to use an existing
CircuitPython driver if it uses the same chipset as one of the available
drivers. This isn't guaranteed though as a manufacturer might have made
changes to a board not supplied by Adafruit. So you might need to
experiment more to see if the code may work. This isn't to get you to buy
Adafruit's displays, more like a friendly note that more tinkering may be
needed as things may not be tested out like Adafruit displays.

The CircuitPython team encourages contributors to add drivers for displays
not currently handled in the CircuitPython library bundle. If you write a
driver, it can be shared with others with the same display, contributing back
to the community. Isn't Open Source helpful? We think so.

Manual Refresh
Except for EPD (eink) displays, displayio by default automatically takes
care of refreshing the display. This means you never need to call refresh()
and things happen automagically. However, there are times when you may
want to turn this feature off and instead manually refresh the display. One
example might be if you are updating a lot graphical items and want to have
the changes appear "all at once" on the display. Or maybe you want to be
very exact about syncing the update with some other event.

Manually refreshing is pretty simple. The basic idea is to turn off the auto
refresh behavior and then call refresh() as needed.

Turning Auto Refresh Off

There is an auto_refresh parameter you can use when creating your
Display object. If you set this to False, the display will be created with auto
refresh turned off. For example:

display = ST7789(display_bus, width=240, height=240, rowstart=80, auto_refresh=False)

The other way is to use the auto_refresh property after you've created the
display. This not only returns the current state, but is also used to set the
state. To check current state (if you wanted to), you could do something like:

if display.auto_refresh:
print("Auto refresh is ON.")

else:
print("Auto refresh is OFF.")

To turn auto refresh off, you simply set it False:

display.auto_refresh = False

Example Usage

Once you disable auto refresh, it is up to you to call refresh() as needed to
show any updates. Exactly when and where you would do this is specific to
your use case. But here's a simple boiler plate example:

turn off auto refresh
display.auto_refresh = False

#
your code here that changes the display
#

when ready to show results, call refresh()
display.refresh()

Turning Auto Refresh On

If you ever want to revert back to the default behavior, simply re-enable auto
refresh.

display.auto_refresh = True

UI Quickstart
There are several User Interface (UI) elements available to use with
displayio. You can use these together to create all kinds of fun applications
such as a calculator.

Referencing the Display

On boards that have a display, it is automatically initialized. to reference it,
you simply need import board and assign it to the built-in display reference:

import board

display = board.DISPLAY

On board without a built-in display, we recommend taking a look at the
CircuitPython pages regarding your specific display for how to initialize it.
You would then assign display to the returned output of the display driver
initialization. For instance, if you have an ILI9341 display, it would look
something like this, though your pins may vary.

import board
import displayio
import adafruit_ili9341

displayio.release_displays()

spi = board.SPI()
tft_cs = board.D9
tft_dc = board.D10

display_bus = displayio.FourWire(
spi, command=tft_dc, chip_select=tft_cs, reset=board.D6

)
display = adafruit_ili9341.ILI9341(display_bus, width=320, height=240)

Groups

Groups (https://adafru.it/EFx) are a way for displayio to keep track of all of
the elements that it needs to draw. Subgroups can be inside of groups, but
you must have at least one main group - called the root group. For all of the

https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/Group.html

elements on this page, you must first import displayio, so we'll start with
making sure that's at the top of your file.

import displayio

You must also create the group that will be used as your root group and set
that:

my_display_group = displayio.Group()
display.root_group = my_display_group

For CircuitPython versions prior to 8.0, use display.show(my_display_group)
instead.

Shapes

The shapes (https://adafru.it/Fiu) are part of the the
adafruit_display_shapes (https://adafru.it/Jaq) library. At the time of this
writing, there are four shapes available. They work by generating a bitmap
in the specific shape using displayio.

Rectangle

The rectangle is your most
basic shape. It can either
be filled, outlined, or both.

Rounded Rectangle

The rounded rectangle is
a little more complex and
is comprised of 4 lines and
quarter circle corners.

•

https://circuitpython.readthedocs.io/projects/display-shapes/en/latest/api.html
https://github.com/adafruit/Adafruit_CircuitPython_Display_Shapes
https://github.com/adafruit/Adafruit_CircuitPython_Display_Shapes
https://learn.adafruit.com//assets/78040
https://learn.adafruit.com//assets/78040

Circle

The circle is based on the
rounded rectangle and
only draws the four
corners without any width
or height.

Triangle

The triangle allows you to
supply three sets of
coordinates and will
either draw an outline
between those vertices,
fill it in, or both.

•

•

•

https://learn.adafruit.com//assets/78038
https://learn.adafruit.com//assets/78038
https://learn.adafruit.com//assets/78041
https://learn.adafruit.com//assets/78041
https://learn.adafruit.com//assets/79122
https://learn.adafruit.com//assets/79122

To use shapes, you first need to import the shapes you want to use at the top
of your file. For instance if you wanted to separate import all the shapes, you
would add something like this.

from adafruit_display_shapes.rect import Rect
from adafruit_display_shapes.circle import Circle
from adafruit_display_shapes.roundrect import RoundRect
from adafruit_display_shapes.triangle import Triangle

Next, you can draw a rectangle (https://adafru.it/Fiu) with something like:

rect = Rect(0, 0, 80, 40, fill=0x00FF00)

For a circle (https://adafru.it/Fiu), you can create it with something like:

circle = Circle(100, 100, 20, fill=0x00FF00, outline=0xFF00FF)

For a triangle (https://adafru.it/Fiu), you can create it with something like:

triangle = Triangle(170, 50, 120, 140, 210, 160, fill=0x00FF00,
outline=0xFF00FF)

Or you can draw a rounded rectangle (https://adafru.it/Fiu) with something
like:

roundrect = RoundRect(50, 100, 40, 80, 10, fill=0x0,
outline=0xFF00FF, stroke=3)

Finally, you can add all of these shapes to your group.

my_display_group.append(rect)
my_display_group.append(circle)
my_display_group.append(triangle)
my_display_group.append(roundrect)

Fonts

For fonts, there are a couple options that you can use. You can create or
provide a custom font file and use that for your label. If you don't want to
provide a custom bitmap font, you can use the Built-in Terminal Font.

Built-in Terminal
Font

The terminal font looks a
little blocky, but at least
you don't need a separate
file.

This example comes from
the PyBadger Event

https://circuitpython.readthedocs.io/projects/display-shapes/en/latest/api.html#rect
https://circuitpython.readthedocs.io/projects/display-shapes/en/latest/api.html#
https://circuitpython.readthedocs.io/projects/display-shapes/en/latest/api.html#triangle
https://circuitpython.readthedocs.io/projects/display-shapes/en/latest/api.html#roundrect
https://learn.adafruit.com/pybadger-event-badge

Badge (https://adafru.it/
Fiw) guide.

To use the Terminal Font, you first need to import terminalio by adding an
import statement to the top of your file.

import terminalio

Then you simply pass the terminalio font to the UI element. For instance,
with the label, you would do something like:

my_label = Label(terminalio.FONT, text="My Label Text",
color=BLACK)

Bitmap Fonts

The Bitmap font (https://adafru.it/
Fix) uses the
adafruit_bitmap_font (https://
adafru.it/Fiv) library and requires
a separate BDF (Bitmap
Distribution Format) file, but looks
nicer on the screen. It doesn't
currently have anti-aliasing, so it
still looks a little blocky on some
fonts.

This example comes
from the PyBadge Conference
Badge With Unicode
Fonts (https://adafru.it/Fiy) guide.

To use a Bitmap Font, you first need to copy your custom file over to your
CIRCUITPY drive. We like to place fonts into a /fonts folder. To find out
more about creating your own custom fonts, be sure to check out
our Custom Fonts for CircuitPython Displays (https://adafru.it/E7E) guide.

•

•

https://learn.adafruit.com//assets/78079
https://learn.adafruit.com//assets/78079
https://learn.adafruit.com/pybadger-event-badge
https://learn.adafruit.com//assets/78078
https://learn.adafruit.com//assets/78078
https://circuitpython.readthedocs.io/projects/bitmap-font/en/latest/api.html
https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font
https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font
https://learn.adafruit.com/pybadge-conference-badge-multi-language-unicode-fonts
https://learn.adafruit.com/pybadge-conference-badge-multi-language-unicode-fonts
https://learn.adafruit.com/pybadge-conference-badge-multi-language-unicode-fonts
https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display

Next import bitmap_font by adding an import statement to the top of your
file.

from adafruit_bitmap_font import bitmap_font

After that, you can create a font instance. For example, if you have a font file
named Arial-12.bdf in the fonts folder, you would use the following line of
code.

font = bitmap_font.load_font("/fonts/Arial-12.bdf")

Then you simply pass font instance to the UI element. For instance, with the
label, you would do something like:

my_label = Label(font, text="My Label Text", color=BLACK)

Label

The label (https://adafru.it/Fiz) requires the adafruit_display_text (https://
adafru.it/FiA) library. It requires a font to be passed in. This can either be
the Terminal Font or a Custom Font. It allows you to display text and place it
in your displayio group. The conference badge mentioned in the fonts
section makes great use of labels.

To create a label, you first import the required library at the top of your file.

from adafruit_display_text.label import Label

Then you create the label.

my_label = Label(terminalio.FONT, text="My Label Text",
color=BLACK)

Finally, add the label to a displayio group. This can either be your main
group or a subgroup.

my_display_group.append(my_label)

Button

The button (https://adafru.it/FiB) makes use of the adafruit_button (https://
adafru.it/FiC) library and builds on top of the
adafruit_display_shapes, adafruit_label, and
adafruit_touchscreen (https://adafru.it/FiD) libraries. A button is basically
a shape and label together which can also handle presses as well as color
inversion.

To use the button, you need to add the required libraries to the top of your
file.

from adafruit_button import Button
import adafruit_touchscreen

https://circuitpython.readthedocs.io/projects/display-text/en/latest/api.html
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text
https://circuitpython.readthedocs.io/projects/display-button/en/latest/api.html
https://github.com/adafruit/Adafruit_CircuitPython_Display_Button
https://github.com/adafruit/Adafruit_CircuitPython_Display_Button
https://github.com/adafruit/Adafruit_CircuitPython_Touchscreen
https://github.com/adafruit/Adafruit_CircuitPython_Touchscreen

Next create your button. There are lots of options and you can take a look at
some of the examples provided in the button library to get an idea of the
various things you can do.

my_button = Button(x=20, y=20, width=80, height=40,
 label="My Button", label_font=terminalio.FONT)

The font is required, but again, you can provide either the built-in font or a
custom font. Finally add it to your group.

my_display_group.append(my_button)

Here's what the simple test example looks like showing many different
variations.

Images

Images are also available, although they are not used in this calculator
project. There are a couple of different ways to display images with
displayio.

ImageLoad Library - This library loads images from storage directly
into memory. While faster, enough memory to hold the image data must
be available.
OnDiskBitmap - This uses the image data directly from storage (disk).
While slower, this approach requires less memory.

ImageLoad Library

Imageload (https://adafru.it/FiE) is the main class in
the adafruit_imageload (https://adafru.it/EFL) library provides an easy way
to decode and display bitmaps. To use it, first include the library at the top
of your file.

import adafruit_imageload

Second, Generate the Bitmap and Palette from the image:

my_bitmap, my_palette = adafruit_imageload.load("/my_bitmap.bmp",
bitmap=displayio.Bitmap, palette=displayio.Palette)

Third, create a TileGrid from the Bitmap and Palette:

my_tilegrid = displayio.TileGrid(my_bitmap,
pixel_shader=my_palette)

Finally add the TileGrid to your display group.

my_display_group.append(my_tilegrid)

OnDiskBitmap

OnDiskBitmap (https://adafru.it/EFt) is available directly through displayio
and is very easy to use. The first step is to open the image file with read and
binary modes and create a bitmap. Because of its flexibility and low memory
use, this is the recommended way.

my_bitmap = displayio.OnDiskBitmap("/my_bitmap.bmp")

The second step is to create a TileGrid from the image using the automatic
color converter.

my_tilegrid = displayio.TileGrid(my_bitmap,
pixel_shader=my_bitmap.pixel_shader)

Finally add the TileGrid to your display group.

my_display_group.append(my_tilegrid)

•

•

https://circuitpython.readthedocs.io/projects/imageload/en/latest/api.html
https://github.com/adafruit/Adafruit_CircuitPython_ImageLoad
https://github.com/adafruit/Adafruit_CircuitPython_ImageLoad
https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/OnDiskBitmap.html

Calculator UI Elements

The PyPortal Calculator makes use of the Rectangle, Label, and Button
Elements.

Helper Libraries
There are numerous helper libraries that have been created to use along
with displayio. Some of these have already been mentioned, but here we
provide a summary list.

The List

In no particular order.

Adafruit_CircuitPython_Display_Text (https://adafru.it/FiA) - text labels•

https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

Adafruit_CircuitPython_Bitmap_Font (https://adafru.it/Fiv) - custom font
support
Adafruit_CircuitPython_ImageLoad (https://adafru.it/EFL) - load image
files
Adafruit_CircuitPython_Display_Shapes (https://adafru.it/Jaq) - lines and
circles and triangles, oh my!
Adafruit_CircuitPython_Display_Button (https://adafru.it/FiC) - clickable
buttons
Adafruit_CircuitPython_ProgressBar (https://adafru.it/Kpb) - progress
bars
Adafruit_CircuitPython_Display_Notification (https://adafru.it/QGD) -
notifications
Adafruit_CircuitPython_DisplayIO_Layout (https://adafru.it/QGE) -
graphical element layout assistant
Adafruit_CircuitPython_Slideshow (https://adafru.it/QGF) - multi-image
slideshow driver

FAQs

Is there an easy way to draw bar graphs?

Yes! We have the Adafruit CircuitPython ProgressBar (https://adafru.it/Kpb)
library available. Examples can be found here (https://adafru.it/Ody).

How did displayio naming change in
CircuitPython 9?

The names for various components of displayio were changed in
CircuitPython 9. The different kinds of displays were split into separate top-
level modules. Using the old names in CircuitPython 9 will generate
warnings, but will still work. In CircuitPython 10 the old names will be
removed completely.

displayio.Display is now busdisplay.BusDisplay.
displayio.FourWire is now fourwire.FourWire.
displayio.EPaperDisplay is now epaperdisplay.EPaperDisplay.
displayio.I2CDisplay is now i2cdisplaybus.I2CDisplayBus.

Why doesn't display.show() work anymore?

In CircuitPython 8, display.show(some_group) was replaced
by display.root_group = some_group. You can also read the current root

•

•

•

•

•

•

•

•

•
•
•
•

https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font
https://github.com/adafruit/Adafruit_CircuitPython_ImageLoad
https://github.com/adafruit/Adafruit_CircuitPython_Display_Shapes
https://github.com/adafruit/Adafruit_CircuitPython_Display_Button
https://github.com/adafruit/Adafruit_CircuitPython_ProgressBar
https://github.com/adafruit/Adafruit_CircuitPython_Display_Notification
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_Layout
https://github.com/adafruit/Adafruit_CircuitPython_Slideshow
https://github.com/adafruit/Adafruit_CircuitPython_ProgressBar
https://github.com/adafruit/Adafruit_CircuitPython_ProgressBar/tree/master/examples

group with display.root_group. show() no longer works in CircuitPython
9.

	CircuitPython Display Support Using displayio
	Table of Contents
	Introduction
	Library Overview
	Bitmap and Palette
	TileGrid
	Group
	Display and Display Bus
	EPaperDisplay
	Examples
	Text
	Display a Bitmap
	Draw Pixels
	Sprite Sheet
	Multiple TileGrids
	External Display
	Manual Refresh
	UI Quickstart
	Helper Libraries
	FAQs

	Introduction
	Library Overview
	Image Related Things
	Collection Related Things
	Display Hardware Things
	Coordinate System
	Hierarchy and Nesting

	Bitmap and Palette
	Bitmap
	Palette
	Bitmap + Palette

	TileGrid
	TileGrid
	Changing a Tile

	Group
	Group Adding/Removing
	Group Position
	Group Scale
	Group Visibility
	Group Content Limits
	Summary

	Display and Display Bus
	FourWire
	I2CDisplay
	ParallelBus
	Display
	Display Drivers
	Boards with Built In Displays
	Boards without Built In Displays
	Using a Display
	Releasing Displays

	EPaperDisplay
	Boards with Built in EPDs
	EPD Usage
	EPD Specific Behavior

	Examples
	A Note on Display Setup

	Text
	Display Text
	Bitmap Fonts
	Basic Text with Built in Font
	Using Bitmap Fonts
	Text Positioning
	Changing Text

	Display a Bitmap
	BMP File Format
	OnDiskBitmap
	ImageLoad

	Draw Pixels
	Sprite Sheet
	Sprite Sheet Example
	Change The Scale!
	Change The Location!

	Multiple TileGrids
	A Sprite and Its Castle
	Order Matters
	Using Different Scale
	Change The Sprite
	Change Sprite Location

	External Display
	The Hard Way
	The Easy Way

	Manual Refresh
	Turning Auto Refresh Off
	Example Usage
	Turning Auto Refresh On

	UI Quickstart
	Referencing the Display
	Groups
	Shapes
	Rectangle
	Rounded Rectangle
	Circle
	Triangle

	Fonts
	Built-in Terminal Font
	Bitmap Fonts

	Label
	Button
	Images
	ImageLoad Library
	OnDiskBitmap

	Calculator UI Elements

	Helper Libraries
	The List

	FAQs
	Is there an easy way to draw bar graphs?
	How did displayio naming change in CircuitPython 9?
	Why doesn't display.show() work anymore?

